PLANNED INSTRUCTION

A PLANNED COURSE FOR:

STEELS: Science, Technology and Engineering, Environmental Literacy and Sustainability

Curriculum writing committee: Gail Atchison, Melinda Luhrs, and Corinne Matthews

Grade Level: Fifth Grade

Date of Board Approval: _____

Curriculum Map

Overview:

Introduction

Science, Technology & Engineering, and Environmental Literacy & Sustainability (STEELS) Standards guide the study of the natural and human-made world through inquiry, problem-solving, critical thinking, and authentic exploration. This document displays a curriculum framework for Grade 5 Science. It is designed to focus curriculum and teaching, provide guidance for multiple approaches to curriculum development, encourage less reliance on textbooks as curriculum, and avoid activity-oriented teaching without focus/purpose.

Science Long Term Transfer Goals

In support of the Curriculum Framework, Long Term Transfer Goals (LTTG) provide the overarching practices that ground the foundation for a robust curriculum; thus, all curriculum should relate to one or more of the LTTGs detailed below – as they highlight the effective uses of understanding, knowledge, and skill that we seek in the long run; i.e., what we want students to be able to do when they confront new challenges – both in and outside of school.

Students will be able to engage as technological and engineering literate members of a global society, using their learning to:

- * approach science as a reliable and tentative way of knowing and explaining the natural world and designed world.
- ♦ weigh evidence and use scientific approaches to ask questions, investigate, and make informed decisions.
- make and use observations to analyze relationships and patterns in order to explain phenomena, develop models, and make predictions.
- evaluate systems, in order to connect how form determines function and how any change to one component affects the entire system.
- explain how the natural and designed worlds are interrelated and the application of scientific knowledge and technology can have beneficial, detrimental, or unintended consequences.

Marking Period One:

Time Range - 8 ¹/₂ weeks / 45 days

Unit 0: What is Science? 3 days / 1 week (1 lesson per week)

Overview: The science year begins with a brief overview of how science incorporates reasoning, analysis, tools, processes, procedures, systems, models, and patterns in observing the natural world around us.

Goals:

- 1. Know that science is a way of understanding the natural world through inquiry, observation, and verification.
- 2. Know that natural and human-made objects are made up of parts.
- 3. Know models as useful simplifications of objects or processes.
- 4. Illustrate patterns that regularly occur and reoccur in nature.
- 5. Know that scale is an important attribute of natural and human-made objects, events, and phenomena.
- 6. Recognize change in natural and physical systems.
- 7. Identify and use the nature of scientific and technological knowledge.
- 8. Describe objects in the world using the five senses.
- 9. Recognize and use the elements of scientific inquiry to solve problems.
- 10. Recognize and use the technological design process to solve problems.

Unit 1: Physical and Chemical Changes - 18 days / 6 weeks (1 lesson per week) **Goals:**

- 1. Develop a model to describe that matter is made of particles too small to be seen.
- 2. Make and communicate observations and measurements to identify materials based on their properties.
- 3. Interpret and analyze data to make decisions about how to utilize materials based on their properties.
- 4. Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.
- 5. Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

Marking Period Two:

Time Range - 8 1/2 weeks / 45 days

Unit 2: Energy in Ecosystems - 24 days / 8 weeks (1 lesson per week)

Goals:

- 1. Support an argument that plants get the materials they need for growth chiefly from air and water.
- 2. Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.
- 3. Use models to describe that energy in animal's food used for body repair, growth, motion, and to maintain body warmth was once energy from the sun.
- 4. Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment.

Marking Period Three:

Time Range - 8 ¹/₂ weeks / 45 days

Unit 3: Earth's Major Systems / Earth's Features and Processes - 6 weeks / 18 days (1 lesson per week)

Goals:

- 1. Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.
- 2. Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.
- 3. Describe and graph the amounts of saltwater and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.
- 4. Generate and design possible solutions to a current environmental issue, threat, or concern.

Begin: Units 4 and 5: Stars and the Solar System -

Unit 4: Earth and Space Patterns - 6 weeks / 18 days (1 lesson per week)

Goals:

1. Support an argument that the gravitational force exerted by Earth on objects is directed down.

Marking Period Four:

Time Range - 8 1/2 weeks / 45 days

Continue: Units 4 and 5: Stars and the Solar System -

Unit 4: Earth and Space Patterns - 6 weeks / 18 days (1 lesson per week)

Unit 5: Stars and Planets - 4 weeks / 12 days (1 lesson per week)

Goals:

- 1. Support an argument that the gravitational force exerted by Earth on objects is directed downward.
- 2. Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from Earth.

PSSA Prep (approximately 2 weeks)

PSSA Testing (2 weeks - ELA, Math, & Science)

Unit 6: (approximately 4 weeks) Getting Ready for 6th Grade: Introduction to Open SciEd

Curriculum Plan

Unit 0: Nature of Science Curriculum Map

Unit Overview

The science year begins with a brief overview of how science incorporates reasoning, analysis, tools, processes, procedures, systems, models, and patterns in observing the natural world around us.

Beginning of year set-up:

- 1. Develop a shared set of classroom norms: Classroom Agreement Lesson, Agreement doc
- 2. Establish routines for set up and break down.
- 3. Build a science notebook that includes numbered pages and a table of contents (8 $\frac{1}{2}$ x 11 recommended).

|--|

Textbook and Supplemental Resources

Mystery Science IXL YouTube, New York Botanical Garden, *Kids Observe Like Scientists* Beetlesproject.org, *I notice, I wonder, It reminds me of...* Can You Save Fred? pdf Saving Fred (you tube video)

Unit 0: Nature of Science Curriculum Map Learning Objectives/DOK Levels

Students will know (DCI)	Students will be able to (SEP)	Students will apply(CCC)	DOK Level(s)
Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena • Science explanations describe the mechanisms for natural events.	Developing and Using Models Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.	 Connections to Nature of Science: Patterns: Science assumes consistent patterns in natural systems. Similarities and differences in patterns can be used to sort, classify, communicate and 	DOK Level 1 (Recall and Reproduction) Recall or recognize a fact, term, structure, or property. Represent in words or diagrams a scientific concept or relationship.
Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are	 Use models to describe phenomena. Planning and carrying out 	analyze simple rates of change for natural phenomena.Different materials have different substructures, which can	Provide or recognize a standard scientific representation for a simple phenomenon.
not distinguished, and no attempt is made to define the unseen particles or explain the atomic-	investigations to answer questions or test solutions to problems in 3–5 builds	sometimes be observed. Systems and System Models:	Perform a grade level- appropriate routine procedure, such as measuring.
scale mechanism of evaporation and condensation.)	on K–2 experiences and progresses to include investigations that control variables and provide	• A system can be described in terms of its components and their interactions.	DOK Level 2 (Skills/Concepts): Specify and explain the relationship
	 evidence to support explanations or design solutions. Make observations and measurements to produce data to serve as the basis for evidence 	Connections to Nature of Science Science Addresses Questions About the Natural and Material World. • Science findings are limited to	between facts, terms, properties, or variables. Describe and explain examples and non-examples of science concepts.
	for an explanation of a phenomenon.	questions that can be answered with empirical evidence.	Select a procedure according to specified criteria and

			perform it. Formulate a routine problem, given data and conditions. Organize, represent, and interpret data. Interpret or explain phenomena in terms of science concepts. Make basic predictions for cause-and-effect relationships.
--	--	--	---

Core Activities and Corresponding Instructional Methods

Mystery Science Unit(s)	Core Activities	Corresponding Instructional Methods	Extensions	Correctives	Time/Days
This is a suggested unit	for the first week of se	chool.			
Unit 0: <u>What is Science?</u> 3 Mini-Lessons: L1. <u>Observing and</u> <u>Asking questions</u> <i>How do scientists know</i> <i>so much?</i> L2. <u>Experiments and</u> <u>Variables: What does a</u> <u>scientist do?</u> L3. <u>How do Scientists</u> <u>Learn About Wild</u> <u>Animals?</u>	 * After each lesson, revise See, Think, Wonder, DQB, and model. Mystery Science Mini-Lesson: L1. Observing and Asking questions How do scientists know so much? In this mini-lesson, students deepen their understanding of two foundational scientific practices: making observations and asking questions. In the activity, 	Lesson 0: -Intro Phenomenon -Connect • See, Think, Wonder -Question • Driving Question Board (DQB) • Questionin g Circle - Create Models (Individual and/or Group) -Discussion • Claims- Evidence- Reasoning (CER) -Connect to Anchor	First Week of school: Teacher-selected activity incorporating scientific process <i>example</i> : <u>Can You</u> <u>Save Fred?</u> pdf <u>Saving Fred</u> (you tube video)	IXL: Scientific Inquiry- Code: VYB	Day 1: Engage 10 mins Explore/Hands-On 20 mins

Curiosity Challenge, students "train their brains" by observing an everyday object and asking questions like a scientist would. Engage: (10 min) Lesson Video Explore: Activity (20 min) Materials: Wonder Journal Students work in pairs. Explain: Discussion Describe how scientists know so much. Elaborate: Wrap-Up: What did this lesson make you curious about? What other questions do you have about scientists?	• Summary Table (to be completed at the end of each lesson)		
---	---	--	--

Mystery Science Mini-Lesson: L2. Experiments and Variables: What does a scientist do?In the mini-lesso students explore some things they do every day that scientists ALSO do: observe, ask questions, do experiments, and share their questions and learning. In the activity, Termite Tester, students virtually observe termite behavior and then do a series of virtual experiments to figure out the answers to their questions.Engage: Lesson Video (8 min)	Observe and ask questions Develop and use models to describe phenomena Plan and carry out investigations to answer questions or test solutions to problems that	Extension Activity Science starts when you notice something interesting. With practice, you can get better at noticing interesting things. Try this— decide on one kind of thing you want to notice. You could decide to notice things that are red, for example. Or you could listen for things that hum. Or you could search for things that feel slippery. Then spend five minutes searching for things that match what you decided to notice. When the time is up, write about or draw a picture of the most exciting or surprising thing		Day 2: Engage Lesson Video (8 min) Explore Activity (30 min) Students work in pairs
---	--	---	--	--

Mini-IL3.HoScientiAboutAnimaEngagLessormin)Jane GDiscussHow dscientiabout vanimalExplorKids GScientiKids GScienti(45 mi)You T'(3 min)Botanifrom LHall ojStudenGuide:Wonde	ists LearnIWild Wild Develop and use models to descript phenomenaWild Develop and use models to descript phenomenaWild StoreDevelop and use models to descript phenomenaGoodall ssion lo you think sts learn wild ls?Plan and carry of investigations to answer question or test solutions problems that controls variable and provides evidence to support explanations or design solutionsDevelop and use models to descript phenomenaGoodall ssion lo you think sts learn wild ls?Plan and carry of investigations to answer question or test solutions problems that controls variable and provides evidence to support explanations or design solutionsDevelop and use models to descript phenomenaWild sts Deserve Like ists Deserve Like ists Activity m)Ube Video: Distruct (Distruct) NY and measurement to produce data serve as the basic for evidence for explanation of a phenomenon.	 Interference Science Tools? Science Tools? IXL Identify Control and Experimental Groups Code WKB Identify independent and dependent variables Code JZJ Identify independent and dependent variables Code JZJ 	IXL Identify Lab Tools Code CGZ	Day 3: Engage 10 min Explore/Hands-On 45 min
---	--	--	---------------------------------------	--

			[]
hand lens (1	per		
student)			
access to plan			
(inside or out	(side)		
pencil			
Paper to reco			
plant drawing			
observations			
Observation			
Prompts:			
I notice			
I wonder			
It reminds me			
Students reco			
observations	about		
plants			
Explain:			
Observe			
Record			
Share observ	ations		
Elaborate:			
Wrap-Up: W	hat		
did this lesso	n		
make you cur			
about? What			
questions do			
have about			
scientists?			

Unit 0 Assessments

Diagnostic	Formative	Summative
Wonder Journal	Class Discussion, Teacher Observation, IXL Quizzes	Suggested Performance Task Can You Save Fred?
I Notice, I Wonder, It Reminds Me of	Termite Tracker	
Directed Question Board (DQB)		

Unit 1: Physical and Chemical Changes Curriculum Map

Unit Overview

The bundle organizes performance expectations with a focus on helping students begin to understand the conservation of matter and its particulate nature. The idea that matter of any type can be subdivided into particles that are too small to see (PS1.A as in 5-PS1-1) connects to the idea that the amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish (PS1.A as in 5-PS1-2). The total weight of substances also does not change no matter what reaction or change in properties occurs (PS1.B as in 5-PS1-2). Change in properties connects to the idea that when two or more different substances are mixed, a new substance with different properties may be formed (PS1.B as in 5-PS1-4). Measurements of a variety of properties can be used to identify materials (PS1.A as in 5-PS1-3), including the new ones that may be formed when two or more substances are mixed.

The engineering design idea that different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints (ETS1.C as in 3-5-ETS1-3) could connect to multiple science concepts, such as that when two or more different substances are mixed, a new substance with different properties may be formed (PS1.B as in 5-PS1-4), and that measurements of a variety of properties can be used to identify materials (PS1.A as in 5-PS1-3). Students can be challenged to create a new substance with particular properties (i.e., given criteria). In order to test the solution, measurements of the properties need to be taken to determine that the new substance with the desired properties has been created.

PA STEELS Standards	Big Idea	Essential Questions
 <u>3.2.5.A</u> Develop a model to describe that matter is made of particles too small to be seen. (5-PS1-1) <u>3.2.5.D</u> Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. (5-PS1-2) <u>3.2.5.B</u> Make and communicate observations 	All forms of matter exist as a result of the combination or rearrangement of atoms. The atoms of some substances combine or rearrange to form new substances that have different properties.	How do particles combine to form the variety of matter one observes? How do substances combine or change (react) to make new substances? How does one characterize and explain these reactions and make predictions about them?
and measurements to identify materials based on their properties. (<u>5-PS1-3</u>) <u>3.2.5.E</u> Conduct an investigation to determine whether the mixing of two or more substances results in new substances. (<u>5-PS1-4</u>) Technology & Engineering:		
 3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. 3.5.3-5.C Follow directions to complete a technological task. 3.5.3-5.M Demonstrate essential skills of the engineering design process. 3.5.3-5.R Apply tools, techniques, and 		
 3.5.3-5.K Apply tools, techniques, and materials in a safe manner as part of the design process. 3.5.3-5.I Design solutions by safely using tools, materials, and skills 3.5.3-5.W Describe the properties of different materials. 		

Environmental Literacy & Sustainability: 3.4 3-5.A Analyze how living organisms, including humans, affect the environment in which they live, and how their environment affects them.			
--	--	--	--

Textbook and Supplemental Resources

Mystery Science IXL Discovery Education Read Works Science: A Closer Look Unit 1: Physical and Chemical Changes Curriculum Map

Learning Objectives/DOK Levels

Students will know (DCI)	Students will be able to (SEP)	Students will apply(CCC)	DOK Level(s)
Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gasses are made from matter particles that are too small to see and that are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. No matter what reaction or change in properties occurs, the	Developing and Using Models: Use models to describe phenomena. Using Mathematics and Computational Thinking: Measure and graph quantities such as weight to address scientific and engineering questions and problems. Planning and Carrying Out Investigations: Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon. Planning and Carrying Out Investigations: Conduct an	Scale, Proportion, and Quantity: Natural objects exist from the very small to the immensely large. Scale, Proportion, and Quantity: Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. Cause and Effect: Cause and effect relationships are routinely identified and used to explain change.	DOK Level 3 (Strategic Thinking): Using models to describe phenomena involves applying reasoning to represent scientific concepts or processes, requiring the analysis and interpretation of how the model reflects reality. DOK Level 2 (Skills/Concepts): Measuring and graphing quantities involves applying mathematical skills to represent data, but the task remains focused on understanding and applying concepts rather than deeper analysis. DOK Level 3 (Strategic Thinking): Collecting observations and measurements
total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.)	investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of		to form evidence requires strategic thinking, as it involves analyzing data and using it to explain a phenomenon.
Measurements of a variety of properties can be used to identify materials. (Boundary: At this	trials considered.		DOK Level 3 (Strategic Thinking: Conducting an investigation with controlled

grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic scale mechanism of evaporation and condensation.)		variables and multiple trials requires strategic thinking to design the investigation, control conditions, and produce reliable data for analysis.
When two or more different substances are mixed, a new substance with different properties may be formed.		

Mystery Science Unit(s)	Core Activities	Corresponding Instructional Methods	Extensions	Correctives	Time/Days
Unit 1: Chemical Reactions & Properties of Matter (Chemical Magic) In this unit, students investigate the properties of matter by dissolving everyday chemicals to make solutions and by exploring simple yet surprising chemical reactions. Through these investigations, students begin to build conceptual models for the particulate nature of matter.	Mystery Science Teacher Guide * After each lesson return to See, Think, Wonder and add to model. Lesson 0: Anchoring Phenomenon Disappearing Gargoyles The anchor phenomenon for this unit is stone gargoyles that seem to disappear over time. Students generate observations and questions about the phenomenon and create an initial argument to explain what is happening.	Suggested Routine Lesson 0: -Intro Phenomenon -Connect • See, Think, Wonder -Question • Driving Question Board (DQB) • Questioning Circle - Create Models (Individual and/or Group) -Discussion • Claims-Evidence- Reasoning (CER) -Connect to Anchor • Summary Table (to be completed at the end of each lesson)	Unit 1 Reading: <u>The Great</u> <u>Molasses Flood</u> :	IXL:Interpret ball and stick models Code R7RUnderstand conservation of matter using graphs Code S7UCompare properties of objects Code 5TKCompare physical and chemical changes Code HW5Identify reactants and products Code DV7Identify mixtures Code FK8	Approximately 1 lesson per week- Wk 1: anchor phenomenon Wk 2-6: lessons Wk 7: assess Anchor Phenomenon 13 mins Guided Inquiry 20 mins Hands-On Activity 25 mins Wrap-Up 2 mins

Activities and Corresponding Instructional Methods

chance to think about where the tarnish went. Explain: Wrap-up slides & teacher-led discussion. Anchor Connection Students wonder: What happens to substances when they seem to change and disappear? Students learn: Another substance may have caused the gargoyles to disappear over time. Evaluate: L1 assessment Elaborate: Extensions include readings, activities, and videos.				
--	--	--	--	--

 * L2: Dissolving & Particulate Nature Matter *To align with pactivity. Focus question: Could you transforms omething worthles gold? In this session, studin investigate the alchemists' claim of transforming ordinametals into gold. Engage: L2 Video Explore: In the har activity, "The King Sword", students unvinegar, salt, and pusolution that they claim the composition of the pennies ar same ones that even 	e ofUse mathematics and computational thinking to measure and graph quantities such as weight to address scientific and engineering questions and problems.mPlan and carry out investigations.Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenonMake-on collaboratively to produce data to serve as the basis for evidence for an explanation of a phenomenonConduct an investigation collaboratively to produce data to serve as the basis for evidence	Vocabulary: Printout Slideshow Extension Activity: Can you make a penny turn blue? Read "The Penny Experiment" in list of readings Mini Lesson: How is Gold Made?	IXL: Interpret ball and stick models Code R7R Understand conservation of matter using graphs Code S7U	Exploration 20 mins Hands-On Activity 25 mins Wrap-Up 10 mins Anchor Connection 20 mins
---	--	---	--	--

coat the nail in copper. Explain: Wrap-up slides & teacher-led discussion. Anchor Connection Students wonder: Why was the vinegar so good at changing substances? Students learn: The stone from the gargoyles could have been dissolved by another substance. Evaluate: L2 Assessment. Elaborate: Extensions include readings, activities, and videos.				
--	--	--	--	--

 L3: Properties of Matter: Acids Focus question: What would happen if you drank a glass of acid? In this session, students are introduced to acids, a group of substances with a reputation for being reactive. Engage: L3 Video Explore: In the hands-on activity, Acid Test, students discover two ways to detect acids: they use baking soda, which fizzes when mixed with acids, or a special liquid that changes color when mixed with acids. Then, students use those methods to identify common foods that are acidic. Explain: Wrap-up slides & teacher-led discussion. Anchor Connection Students wonder: Besides acids, will all 	 Develop and use models Use mathematics and computational thinking to measure and graph quantities such as weight to address scientific and engineering questions and problems. Plan and carry out investigations Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon Conduct an investigation collaboratively to produce data to serve as the basis for evidence 	Vocabulary: Printout Slideshow Extension activities: Color-changing foods Make an egg without a shell Taste the fizz	IXL: Compare properties of objects Code 5TK	Exploration 20 mins Hands-On Activity 25 mins Wrap-Up 10 mins Anchor Connection 20 mins
---	---	---	--	--

L4: Chemical Reaction Focus question: What do fireworks, rubber, and Silly Putty have in common?,This lesson develops the idea that chemical reactions create new materials that have usefu and interesting propertieEngage: L4 Video Explore The "Great Goo Experiment" is a two-paractivity. In Part 1, students experiment by combining different substances and watching for reactions. In Part 2, students mix glue and borax solution is clear plastic bags to observe the reaction, which creates "Mystery Goo."Explain: Wrap-up slides & teacher-led discussion Anchor Connection Students wonder How can we tell if the	 Use mathematics and computational thinking to measure and graph quantities such as weight to address scientific and engineering questions and problems. Plan and carry out investigations Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon Conduct an investigation collaboratively to produce data to serve as the basis for evidence 	Vocabulary: Printout Slideshow Mini Lesson: How do things glow in the dark? Extension Activity: Mystery Science Goo Challenge	IXL: Compare physical and chemical changes Code HW5 Identify reactants and products Code DV7 Identify mixtures Code FK8	Exploration 12 mins Hands-On Activity 45 mins Anchor Connection 20 mins
--	---	--	---	--

new substance created by a chemical reaction is a gas? Students learn: Evidence suggests that the acid rain and stone (calcium carbonate) can react to create new substances. Evaluate: L4 assessment. Elaborate: Extensions include readings, activities, and background information.		

 L5: Gases and Particle Models Focus question: Why do some things explode? In this session, students investigate and model how gases cause explosions. Engage: L5 Video Explore: In the hands-on activity, "Bag of Bubbles," students experiment by combining baking soda and vinegar inside a sealed bag and observe how the gas bubbles produced cause the bag to inflate-and sometimes pop! Explain: Wrap-up slides & teacher-led discussion. Anchor Connection Students learn: This experiment suggests that one of the substances created in the reaction between acid rain and stone (calcium 	Develop and use models Use mathematics and computational thinking to measure and graph quantities such as weight to address scientific and engineering questions and problems. Plan and carry out investigations Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon Conduct an investigation collaboratively to produce data to serve as the basis for evidence	Vocabulary: Printout Slideshow Extension Activity: Blow up a balloon with baking soda and vinegar	IXL: <u>Interpret ball and</u> <u>stick models</u> Code R7R	Exploration 15 mins Hands-On Activity 35 mins Wrap-Up 5 mins Anchor Connection 30 mins
--	---	--	--	---

carbonate) was a gas that expanded into the atmosphere. Evaluate: L5 Assessment. Elaborate: Extensions include readings, activities, and discussions.		

Unit Assessment orPerformance Task Argument from EvidenceFocus question: "What happened to the stone gargoyles over time?"In this performance task, students use their evidence chart to revise their final argument about what happens to the stone gargoyles over time. They create a particle model to show what is happening in the reaction between acid rain and the stone gargoyles to support their argument. If you have time to extend the performance task, there is a hands-on investigation in the Extensions.Step 1: Plan ahead: Students will need their completed The Alchemist	Develop and use models Use mathematics and computational thinking to measure and graph quantities such as weight to address scientific and engineering questions and problems. Plan and carry out investigations Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon Conduct an investigation collaboratively to produce data to serve as the basis for evidence		IXL:Interpret ball and stick models Code R7RUnderstand conservation of matter using graphs Code S7UCompare properties of objects Code 5TKCompare physical and chemical changes Code HW5Identify reactants and products Code DV7Identify mixtures Code FK8	Unit Review: 15 min Hands-On: 40 min Wrap-Up: 5 min
---	---	--	--	--

Argument Evidence		
Chart that they have been		
adding to after each		
Mystery.		
Students will also need their first The Alchemist		
Argument worksheet that		
they completed during the		
introduction to the anchor		
phenomenon.		
Step 2: Print out		
worksheets:		
Each student will need:		
One Final Alabamiat		
One Final Alchemist		
Argument worksheet. https://mysteryscience.co		
m/docs/497		
One Final Alchemist		
Argument Rubric		
worksheet (there are 3		
versions, select the best		
fit for your class).		
https://mysteryscience.co		
<u>m/docs/499</u>		
Teacher Resource: The		
Final Alchemist		
Argument Sample Model		
and Response will give		
you a sense of what your		

students should be aiming to produce. <u>https://mysteryscience.co</u> <u>m/docs/630</u> Actual student work can and should vary.			
--	--	--	--

Unit 1 Assessments

Diagnostic	Formative	Summative
See, Think, and Wonder Charts	Mystery Science Lesson Assessments	Claims-Evidence- Reasoning (CER)
Directed Question Board (DQB)	Class Discussion, Teacher Observation, IXL Quizzes	<u>Unit Assessment</u> <u>Performance Task: Particle Model and</u> <u>Argumentation: What happened to the</u> <u>gargoyles over time?</u>

Unit 2: Matter and Energy in Ecosystems Curriculum Map

Unit Overview

The bundle organizes performance expectations with a focus on helping students build an understanding of the flow and cycles of matter and energy. The idea that matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die (LS2.B as in 5-LS2-1) connects to the idea that matter of any type can be subdivided into particles that are too small to see (PS1.A as in 5-PS1-1) because matter is subdivided into particles as it flows between organisms and the air and soil. The idea that matter flows also connects to the ideas that plants acquire their material for growth chiefly from air and water

(LS1.C as in 5-LS1-1) and that food provides animals with the materials they need for body repair and growth (LS1.C in 5-PS3-1). Just as matter flows, energy can flow as well. As such, the idea that matter can flow connects to the concept that the energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (PS3.D as in 5-PS3-1). The engineering design concept that communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs (ETS1.B as in 3-5-ETS1-2) could connect to multiple science concepts, such as that a healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life (LS2.A as in 5-LS2-1) and that gasses are made from matter particles that are too small to see and are moving freely around in space (PS1.A as in 5-PS1-1). The first connection could be made through having students share designs for solutions to improve the health of a given ecosystem. The second connection could be made by having students share design for a device that uses the understanding that gasses are made from matter particles too small to see. In either case, students should have an opportunity to communicate with their peers throughout the design process and reflect on how sharing their ideas affected their designs.

PA STEELS Standards	Big Idea	Essential Questions
3.2.5.A Develop a model to describe that	To produce energy typically means to convert	How do particles combine to form the variety
matter is made of particles too small to be	some stored energy into a desired form.	of matter one observes?
seen. (Partially accessible in this unit) (<u>5-PS1-</u>		
<u>1</u>)	All forms of matter exist as a result of the	How do food and fuel provide energy?
3.2.5.G Use models to describe that energy in	combination or rearrangement of atoms.	
animals' food (used for body repair, growth,		

 motion, and to maintain body warmth) was once energy from the sun. (5-PS3-1) 3.1.5.A Support an argument that plants get the materials they need for growth chiefly from air and water. (5-LS1-1) 3.1.5.B Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. (5-LS2-1) Technology & Engineering: 3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. 3.5.3-5.A Use appropriate symbols, numbers and words to communicate key ideas about technological products and systems. 3.5.3-5.N Identify why a product or system is not working properly. 3.5.3-5.U Evaluate designs based on criteria, constraints, and standards. 3.5.3-5.FF Compare how things found in nature differ from things that are humanmade, noting differences and 	Animals have external and internal sensory receptors that detect different kinds of information that then gets processed by the brain. Ecosystems are complex systems that include both living (biotic) and non-living (abiotic) components that interact with each other.	If energy is conserved, why do people say it is produced or used? How do organisms detect, process, and use information about the environment? How do organisms interact with the living and nonliving environments to obtain matter and energy?
--	--	--

similarities in how they are produced and	
used.	
3.5.3-5.BB Illustrate how, when parts of a	
system are missing, it may not work as	
planned.	
3.5.3-5.CC Describe how a subsystem is a	
system that operates as a part of another larger	
system.	
3.5.3-5.L Demonstrate how tools and	
machines extend human capabilities, such as	
holding, lifting, carrying, fastening,	
separating, and computing.	
3.5.3-5.0 Describe requirements of designing	
or making a product or system.	
Environmental Literacy & Sustainability:	
3.4 3-5.A Analyze how living organisms,	
including humans, affect the environment in	
which they live, and how their environment	
affects them.	
3.4.3-5.C Examine ways you influence your	
local environment and community by	
collecting and displaying data.	

Textbook and Supplemental Resources

Mystery Science Science: A Closer Look IXL Discovery Ed

Unit 2: Matter and Energy in Ecosystems Curriculum Map

Students will know (DCI)	Students will be able to (SEP)	Students will apply(CCC)	DOK Level(s)
Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gasses are made from matter particles that are too small to see and that are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. The energy released from food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). Food provides animals with the materials they need for body repair and growth and the energy	Developing and Using Models Use models to describe phenomena. Engaging in Argument from Evidence Support an argument with evidence, data, or a model.	 Scale, Proportion, and Quantity Natural objects exist from the very small to the immensely large. Energy and Matter Energy can be transferred in various ways and between objects. Energy and Matter Matter is transported into, out of, and within systems. Systems and System Models A system can be described in terms of its components and their interactions. 	DOK Level 3 (Strategic Thinking): Developing a model to describe the concept of matter being made of particles too small to be seen involves creating a representation that helps explain a fundamental scientific concept. This requires strategic thinking and understanding of abstract concepts. DOK Level 2 (Skills and Concepts): This statement involves applying a model to explain how energy transfers and transforms, which involves understanding and using concepts but does not require extensive reasoning beyond applying the model. DOK Level 3 (Strategic Thinking): Supporting an

Learning Objectives/DOK Levels

they need to maintain body warmth and for motion. (secondary).Plants acquire their material for growth chiefly from air and water.		argument with evidence that plants obtain materials mainly from air and water requires analyzing and synthesizing information to make a reasoned argument, which involves higher-order thinking.
The food of almost any kind of animal can be traced back to plants.		DOK Level 3 (Strategic Thinking): Developing a model to describe the movement of matter in an ecosystem involves integrating complex interactions and relationships among various components. This requires strategic planning

Mystery Science Unit(s)Core ActivitiesCorresponding Instructional Methods	Extensions	Correctives	Time/Days
--	------------	-------------	-----------

Activities and Corresponding Instructional Methods

Unit 2: Ecosystems &	Mystery Science Teacher Guide:	Suggested Routine	Unit Reading: What can young	Biosphere Bites examples of menus, etc:	Approximately 1 lesson per week-
The Food Web	* After each lesson		people do to protect		Wk 1: anchor
<u>Unit</u>	return to <u>See, Think,</u>	Lesson 0:	the environment?	Biosphere Bites examples	phenomenon
(Web of Life)	Wonder and add to	-Intro Phenomenon		of ingredients needed:	Wk 2-7: lessons
	model.	-Connect	Mystery Science		Wk 8: assess
In this unit,		• See, Think,	Extension:	IXL:	
students	Lesson 0:	Wonder	NOVA	How Do Plants Make	Anchor
explore how	Life Inside a Dome	-Question	Photosynthesis	Food? Code BZ5	Phenomenon
organisms		• Driving	Science Video PBS		13 mins
depend on one	Anchoring	Question		Identify Roles in Food	Guided Inquiry
another and	Phenomenon:	Board	Discovery Ed:	Chains Code CTQ	30 mins
form an	The anchor	<u>(DQB)</u>	Resources for		Hands-On
interconnected	phenomenon for this	• <u>Questionin</u>	Standard 3.1.5	How Does Matter Move in	Activity
ecosystem.	unit focuses on	<u>g Circle</u>		Food Chains? Code FDN	60 mins
Students	attempts to grow food	- Create Models	Resources for		Wrap-Up
investigate food	in an enclosed	(Individual and/or	Standard 3.2.5	Interpret Food Webs I	2 mins
chains, food	ecosystem. Students	Group)		Code 5JX	
webs, and the	generate observations	-Discussion			
importance of	and questions about the	• <u>Claims-</u>		Interpret Food Webs II	
producers,	phenomenon and create	Evidence-		Code LV5	
consumers, and	an initial design	Reasoning			
decomposers.	solution to growing	(CER)		Read and Construct	
-	food inside a dome for	-Connect to		Animal Life Cycle	
	two years.	Anchor		Diagrams Code YFE	
		• <u>Summary</u>		Compare Animal Life	
	Video: Inside	Table		Cycles Code TRB	
	Biosphere 2 Earth's	(to be		-	
	Largest Earth Science	completed		Identify the photosynthetic	
	Experiment:	at the end		organism Code ZAW	

	of each lesson)	How do plants use and change energy? Code PFE	
		How does matter move in food chains? Code FDN	

L1: Food Chains, Producers, and Consumers Focus Question: "Why would a hawk move to New York City?"In this session, students develop their thinking about the predator/prey relationships among living things.Engage:L1 Video Explore: In the hands- on activity, "Eat or Be Eaten," students play a card game in which they make food chains with predators and prey, and producers and consumers. The students who make the longest food chains win the game! Explain: Teacher-led discussion. Anchor Connection	Develop a model to describe phenomena Engage in argument from evidence and support with evidence, data, or a model	Vocabulary: Printout SlideshowMini-lessons: How does composting work?Can trees talk to each other?Extension Activity: Extension for Eat or be Eaten	IXL: How does matter move in food chains? Code 78M	Exploration 15 mins Hands-On Activity 30 mins Anchor Connection 20 mins
discussion.				

eat? How do they help people? Students learn: All living things need a food source in order to grow, and are all part of a food chain. Evaluate: L1 Assessment. Elaborate: Extensions include readings, activities, and videos.				
---	--	--	--	--

Plant *To a view omit a Focus <u>"Wha</u> In thi disco nutrie	: Matter and t Growth align with pacing, lesson video and activity. s question: at do plants eat?" s session, students ver the surprising ent which accounts lost of a plant's	Vocabulary: <u>Printout</u> <u>Slideshow</u>	IXL: Identify the photosynthetic organism Code ZAW How do plants use and change energy? Code PFE How does matter move in food chains? Code FDN	Exploration 21 mins Hands-On Activity 30 mins Wrap-Up 4 mins Anchor Connection 20 mins
Explain on action actio	age: <u>L2 Video</u> ore: In the hands- tivity, "Weighing students blow up ons and place on both sides of a balance scale ructed from a stick. Then, ints let the air out the balloons on ide of the balance rectly observe that as weight.			

Explain: Wrap-up		
slides & teacher-led		
discussion. Anchor Connection		
Ancnor Connection Students wonder: What		
happens to plants when		
they die? Students learn: All		
living things in a food		
chain can trace their		
energy source		
backwards to plants.		
Evaluate:		
L2 Assessment.		
Elaborate:		
Extensions		
include readings,		
videos, and activities.		

L3: Decomposers and Matter Cycle Focus question: "Where do fallen leaves go?"In this session, students discover the role fungi play in decomposing dead materials and in creating soil.	Vocabulary: Printout SlideshowMini-Lesson: How Does Composting Work?Can Trees Talk to Eachother?	IXL: <u>How do plants use and</u> <u>change energy?</u> Code PFE <u>How does matter move in</u> <u>food chains?</u> Code FDN	Exploration 20 mins Hands-On Activity 30 mins Anchor Connection 20 mins
Engage: L3 Video Explore: In the hands- on activity, "Mold Terrarium," students plan and conduct an investigation to discover the factors affecting decomposition. Students fill Ziploc bags with different types of foods and change environmental conditions to study how different variables affect mold growth. They then observe mold growth over a period of two weeks.	<u>How Can You Tell</u> <u>If a Mushroom is</u> <u>Poisonous?</u>		

Explain:Teacher led discussion. Anchor Connection Students wonder: Is mold the only decomposer? What other kinds of decomposers are there? Students learn: Decomposers play an important role in the ecosystem and can always be found in a healthy ecosystem. Evaluate: L3 Assessment. Elaborate: Extensions include readings, activities, videos, FAQs, and discussions.			
L4: Decomposers, Nutrients, & Matter Cycle Focus question: "Do worms really eat dirt?"	Vocabulary: <u>Printout</u> <u>Slideshow</u>	IXL: <u>How do plants use and</u> <u>change energy?</u> Code PFE <u>How does matter move in</u> <u>food chains?</u> Code FDN, 78M	Exploration 16 mins Hands-On Activity 45 mins Wrap-Up 4 mins

In this lesson, students discover the critical role earthworms play i decomposing dead material and releasing nutrients into the soil.	n		Anchor Connection 20 mins
Engage:L4 VideoExplore:During a two part activity, "Ask a Worm," students observe earthworms and then design their own "fair test" investigations of earthworm behavior. Students first make close observations of worms. Then, students conduct a simple experiment with multiple trials to figure out if worms prefer dry or wet areas They consider what a	t		
"fair test" is and desig an experiment to answer other questions about worms.			

Explain: Wrap-up slides & teacher-led discussion.Anchor Connection Students Wonder: Is possible to have too many nutrients in an ecosystem?Students learn: Word help an ecosystem by recycling nutrients by into the soil.Evaluate: L4 Assessment.L4 Assessment.Elaborate: xtensions include readings, activities, and videos	ns 1ck			
L5: Ecosystems and Matter Cycle Focus question: "Why do you have to clean a fish tank but is a pond?" In this session, studen combine what they have learned about plants, animals, and decomposers to see	<u>iot</u>	Vocabulary: <u>Printout</u> <u>Slideshow</u> Mini-Lesson: <u>Why Does it Matter</u> <u>if an Animal is</u> <u>Endangered?</u>	IXL: <u>How do plants use and change energy?</u> Code PFE <u>How does matter move in food chains?</u> Code FDN, 78M	Exploration 22 mins Hands-On Activity 45 mins Wrap-Up 3 mins Anchor Connection 20 mins

Г		
how they interact in an		
ecosystem.		
Engage: <u>L5 Video</u>		
Explore: In part 1 of		
the activity, "Pond		
Ecosystem Game,"		
students first build a		
pond ecosystem that		
will support a sunfish.		
To succeed, they must		
make sure that carbon		
dioxide levels are		
healthy for both plants		
and animals.		
In part 2 of the		
activity, students play a		
game called Big Fish		
where they compete to		
make a healthy		
ecosystem for a sunfish.		
Explain: Wrap-up		
slides & teacher-led discussion.		
Anchor Connection		
Students wonder: What		
happens if one of the		
living things in an ecosystem becomes		
overgrown?		
overgrown:		

Students learn: Ecosystems can become toxic if there is too much carbon dioxide and not enough plants or decomposers to recycle it. Evaluate: L5 Assessment Elaborate: Extensions include readings and resources.				
---	--	--	--	--

L6: Protecting Environments Focus question: "How can we protect Earth's environments?" In this session, students discover what happens in unbalanced ecosystems and how that can lead to an overabundance of algae and harmful algal blooms.	Vocabulary: <u>Printout</u> <u>Slideshow</u> Mini-Lesson: <u>Why are Coral</u> <u>Reefs so Colorful?</u>	IXL:Evaluate claims about natural resource use: groundwater Code N6MEvaluate claims about natural resource use: fossil fuels Code GK5Coral reef biodiversity and human uses: explore a problem Code N2U	Exploration 20 mins Hands-On Activity 35 mins Wrap-Up 7 mins Anchor Connection 20 mins
Engage: 20 min L6 Video Explore: 35 min In the hands-on activity, "Bloom Busters," students play a game in which they obtain and combine science ideas in order to help a community respond to and prevent harmful algal blooms. Explain: 7 min Wrap- up slides & teacher-led discussion.			

20m Stud wou remo an e Stud livin wate clea bios impo Eva L6 A Elat	hor Connection in lents wonder: What ld happen if we oved one piece of cosystem? lents learn: All g things require er. Maintaining a n water supply in a phere is very ortant. luate: Assessment orate: Extensions ade readings and vities.		

L7: Food Webs and Flow of Energy Focus question: "Why did the dinosaurs go extinct?" In this session, students investigate the hypothesis that an asteroid impact caused the extinction of the dinosaurs.	Vocabulary: <u>Printout</u> <u>Slideshow</u>	IXL: <u>How do plants use and</u> <u>change energy?</u> Code PFE	Exploration 15 mins Hands-On Activity 30 mins Wrap-Up 5 mins Anchor Connection 20 mins
Engage: L7 Video Explore: In the hands- on activity, "Create a Dinosaur Food Web," students use cards and construction paper connectors to create a food web from the time of the dinosaurs. Using this model, they follow the flow of energy through the food web and figure out why dinosaurs went extinct but some other animals survived.			

Explain: Wrap-up slides & teacher-led			
discussion.			
Anchor Connection			
Students learn: Energy			
from the sun is the			
original energy source			
for entire ecosystems.			
Evaluate: L7 Assessment.			
Elaborate:			
Extensions			
include readings and			
activities.			
		1	

Unit Assessment or Performance Task: Ecosystem Argument Focus question: "How could we grow food on Mars?"	IXL:Identify the photosynthetic organism Code ZAWHow do plants use and change energy? Code PFEHow does matter move in food chains? Code FDN, 78M	Unit Review: 30 min Hands-On: 60 min
---	--	--

Unit 2 Assessments

Diagnostic	Formative	Summative
See, Think, and Wonder Charts	Class Discussion, Teacher Observation, IXL Quizzes	Claims-Evidence- Reasoning (CER)
Directed Question Board (DQB)		Unit 2 Assessment
		Performance Task: <u>How could we grow food on Mars?</u>

Curriculum Plan

Unit 3: Earth's Features and Processes Curriculum Map

Unit Overview

The unit organizes standards with a focus on helping students build understanding of Earth's major systems and how they interact. The disciplinary core ideas in this bundle are linked through the concept of Earth's major systems. The idea that matter of any type can be subdivided into particles that are too small to see (PS1.A as in 5-PS1-1) can connect to the concept that Earth's major systems interact in multiple ways to affect Earth's surface materials and processes (ESS2.A as in 5-ESS2-1), since matter sometimes moves through the systems as particles that are too small to see. Earth's major systems also connect to the concept that nearly all of Earth's available water is in the ocean, and most freshwater is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere (ESS2.C as in 5-ESS2-2) as this concept is about the hydrosphere. The Earth's major systems are affected by gravity as the gravitational force of Earth acting on an object near Earth's surface pulls that object toward the planet's center (PS2.B as in 5-PS2-1). Finally, the idea that human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, and air also connects to our understanding of Earth's major systems. The engineering design concept that different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success (ETS1.A as in 3-5-ETS1-1) could connect to multiple science concepts, such as that the ocean supports a variety of ecosystems and organisms (ESS2.A as in 5- ESS2-1) and that nearly all of Earth's available water is in the ocean, and most freshwater is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere (ESS2.C as in 5-ESS2-2). The first connection could be made by having students propose solutions regarding threatened ecosystems that are supported by the ocean. The second connection could be made by having students design processes to locate and identify drinkable water. In either case, students should have an opportunity to compare different proposals on the basis of how well they meet given criteria.

PA STEELS Standards	Big Idea	Essential Questions
<u>3.2.5.A</u> Develop a model to describe that matter is made of particles too small to be seen. (<u>5-PS1-1</u>)	All forms of matter exist as a result of the combination or rearrangement of atoms.	How do particles combine to form the variety of matter one observes?
		What underlying forces explain the variety of interactions observed?

3.2.5.F Support an argument that the gravitational force exerted by Earth on objects is directed down. (5-PS2-1) 3.3.5.C Develop a model using an example to	All forces between objects, regardless of size or direction, arise from only a few types of interactions.	Why do the continents move, and what causes earthquakes and volcanoes?
describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. (<u>5-</u> <u>ESS2-1</u>)	Plate tectonics explains the past and current movements and features of the rocks at Earth's surface.	What regulates weather and climate? How do humans change the planet?
3.3.5.D Describe and graph the amounts of saltwater and fresh water in various reservoirs to provide evidence about the distribution of water on Earth. (5-ESS2-2) 3.3.5.E Obtain and combine information about	Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things.	
ways individual communities use science ideas to protect the Earth's resources and environment. (<u>5-ESS3-1</u>)	Human activities in agriculture, industry, and everyday life have had major impacts on the land, rivers, ocean, and air.	
 Technology & Engineering: 3-5-ETS1-1. Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. 3.5.3-5.A Use appropriate symbols, numbers and words to communicate key ideas about technological products and systems. 3.5.3-5.B Examine information to assess the trade-offs of using a product or system. 3.5.3-5.D Predict how certain aspects of their daily lives would be different without given technologies. 3.5.3-5.E Explain why responsible use of technology requires sustainable management of resources 		

· · · · · · · · · · · · · · · · · · ·	7
3.5.3-5. F Classify resources used to create	
technologies as either renewable or	
nonrenewable	
3.5.3-5.G Describe the helpful and harmful	
effects of technology	
3.5.3-5.K Judge technologies to determine the	
best one to use to complete a given task or	
meet a need.	
3.5.3-5.H Determine factors that influence	
changes in a society's technological systems	
or infrastructure.	
3.5.3-5.J Explain how technologies are	
developed or adapted when individual or	
societal needs and wants change.	
3.5.3-5.N Identify why a product or system is	
not working properly.	
3.5.3-5.T Apply universal principles and	
elements of design.	
3.5.3-5.V Interpret how good design improves	
the human condition.	
3.5.3-5.EE Explain how solutions to problems	
are shaped by economic, political, and cultural	
forces.	
3.5.3-5.Y Identify the resources needed to get	
a technical job done, such as people,	
materials, capital, tools, machines,	
knowledge, energy, and time.	
3.5.3-5.Z Create a new product that improves	
someone's life.	
Environmental Literacy & Sustainability:	
3.4.3-5.B Make a claim about the	

environmental and social impacts of design	
solutions and civic actions, including their	
own actions.	
3.4 3-5.A Analyze how living organisms,	
including humans, affect the environment in	
which they live, and how their environment	
affects them.	
3.4.3-5.C Examine ways you influence your	
local environment and community by	
collecting and displaying data.	
3.4.3-5.D Develop a model to demonstrate	
how local environmental issues are connected	
to larger local environment and human	
systems.	
3.4.3-5.F Critique ways that people depend on	
and change the environment.	
3.4.3-5.G Investigate how perspectives over	
the use of resources and the development of	
technology have changed over time and	
resulted in conflict over the development of	
societies and nations.	

Textbook and Supplemental Resources

Mystery Science Science: A Closer Look IXL

Learning Objectives/DOK Levels				
Students will know (DCI)	Students will be able to (SEP)	Students will apply(CCC)	DOK Level(s)	
Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gasses are made from matter particles that are too small to see and that are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects.	 Developing and Using Models: Use models to describe phenomena. Engaging in Argument from Evidence: Support an argument with evidence, data, or a model. Developing and Using Models: Develop a model using an example to describe a scientific principle. Using Mathematics and Computational Thinking: Describe and graph quantities such as area and volume to address scientific questions. Obtaining, Evaluating, and Communicating Information: Obtain and combine information from books and/or other reliable 	 Scale, Proportion, and Quantity: Natural objects exist from the very small to the immensely large. Cause and Effect: Cause and effect relationships are routinely identified and used to explain change. Scale, Proportion, and Quantity: Standard units are used to measure and describe physical quantities such as weight and volume. Systems and System Models: A system can be described in terms of its components and their interactions. 	Here's how each statement aligns with the Depth of Knowledge (DOK) levels: DOK Level 2 (Skills and Concepts): Using models to describe phenomena involves applying models to explain or interpret specific situations. This requires understanding and using existing concepts but does not necessarily involve extensive reasoning or complex problem-solving. DOK Level 3 (Strategic Thinking): Supporting an argument with evidence, data, or a model involves constructing a reasoned argument and integrating evidence to support it. This requires strategic thinking and the ability to analyze and synthesize information.	

Unit 3: Earth's Features and Processes Curriculum Plan

media to explain phenomena or solutions to a design problem.	DOK Level 3 (Strategic Thinking): Developing a model using an example to describe a scientific principle involves creating and applying a model to explain a principle, which requires understanding and integrating complex ideas. This goes beyond simply using a model and involves creating one to illustrate a concept. DOK Level 2 (Skills and Concepts): Describing and graphing quantities such as area and volume involves applying mathematical and computational skills to address scientific questions. This requires using concepts and procedures but does not necessarily involve high-level reasoning or problem-solving. DOK Level 3 (Strategic Thinking): Obtaining, evaluating, and combining information from various

thinking and h	ls to synthesize
----------------	------------------

Mystery Science Unit	Core Activities	Corresponding Instructional Methods	Extensions	Correctives	Time/Days
Unit 3: Water Cvcle & Earth's Systems Unit (Watery Planet) In this unit, students consider the profound importance of water as a natural resource. Students investigate the distribution of water, how it cycles through Earth's systems, and explore how it affects human societies.	Mystery Science <u>Teacher Guide</u> * After each lesson return to <u>See, Think,</u> <u>Wonder</u> and add to model. Lesson 0: <u>Anchor Phenomenon:</u> <u>The Dust Bowl</u> <u>Disaster</u> -The anchor phenomenon for this unit is the Dust Bowl. Students generate observations and questions about the phenomenon and create an initial model to explain how Earth's four spheres interact to cause the Dust Bowl.	Suggested Routine Lesson 0: -Intro Phenomenon -Connect • See, Think, Wonder -Question • Driving Question Board (DQB) • Questioning Circle - Create Models (Individual and/or Group) -Discussion • Claims-Evidence- Reasoning (CER) -Connect to Anchor • Summary Table (to be completed at the end of each lesson)	Unit Reading: All About Drought	IXL:Describe the geosphere, biosphere, hydrosphere, and atmosphere Code ZLLWater on Earth Code LVZDescribe and graph water on Earth Code A2SEvaluate claims about natural resource use: ground water Code N6MEvaluate claims about natural resource use: fossil fuels Code GK5Science literacy: How can a community protect sea turtles? Code 2VE	Approximately 1 lesson per week- Wk 1: anchor phenomenon Wk 2-6: lessons Wk 7: assess Anchor Phenomenon: 10 mins Guided Inquiry 20 mins Hands-On Activity 30 mins

Core Activities and Corresponding Instructional Methods

		Evaluate natural energy sources Code BNC	
		<u>Label parts of the water</u> cycle Code FG2	
		Select parts of water cycle Code BND	

L1: Hydrosphere and Water Distribution Focus question: "How much water is in the world?"In this session, students use estimation and graphing to discover the surprising difference in the amounts of fresh and saltwater on Earth.Engage: L1 video Explore: In the hands-on activity, "Map the World's Water", students count squares on maps and record the amount of fresh, frozen, and salt water found in their assigned area of the world. Then students calculate and graph how much of each	Develop and use models to describe a phenomena and a scientific principle Engage and support an argument with evidence, data, or a model Use math and computational thinking to describe and graph quantities such as area and volume to address scientific questions Obtain, evaluate, and communicate information from books and/or other reliable media to explain phenomena or solutions to a design problem	Vocabulary: <u>Printout</u> <u>Slideshow</u> <u>Mini-lesson:</u> <u>How deep does the</u> <u>ocean go?</u>	IXL: <u>Water on Earth</u> Code LVZ <u>Describe and graph water</u> <u>on Earth</u> Code A2S	Exploration 25 mins Hands-On Activity 25 mins Wrap-Up 5 mins Anchor Connection 30 mins
--	---	---	--	---

	1		1
	type of water is		
	present on the planet.		
	Explain: Wrap-up		
	slides & teacher-led		
	discussion.		
	Anchor Connection		
	Students wonder: If		
	there aren't bodies of		
	freshwater nearby,		
	where does the water		
	come from to support		
	life & human activity		
	(farming, bathing,		
	<i>etc.)?</i>		
	Students learn: The		
	region where the		
	Dust Bowl happened		
	did not have large		
	bodies of freshwater		
	nor did it have		
	significant rainfall.		
	Evaluate: Lesson 1		
	Assessment		
	Elaborate:		
	Extensions include		
	readings, activities,		
	and videos.		

 *L2 Mixtures and Solution: *To align with pacing, view lesson video and omit activity. Focus question: How much salt is in the ocean? In this session, students explore how incredibly salty the ocean is, even though we can't see the salt! Engage: L2 video Explore: In part 1 of the activity, "Tiny Ocean", students create a model ocean to observe how salt seems to completely vanish when dissolved in water. Students then measure and graph quantities of the water and salt to provide evidence that, even though we 	Develop and use models to describe a phenomena and a scientific principle Engage and support an argument with evidence, data, or a model Use math and computational thinking to describe and graph quantities such as area and volume to address scientific questions Obtain, evaluate, and communicate information from books and/or other reliable media to explain phenomena or solutions to a design problem	Vocabulary: Printout SlideshowMini-lessons: Why is the ocean salty?Where does salt come from?Activity: How much salt is in the ocean?	IXL: Understand conservation of matter using graphs Code 9WD	Exploration 10 mins Hands-On Activity 35 mins Wrap-Up 20 mins Anchor Connection 15 mins
---	---	--	---	--

<u>г</u>		I	1
	unnot see it, the salt		
	ill weighs the same		
	nount.		
	In part 2 of the		
	tivity, (May omit if		
	eeded for pacing.)		
	udents also create a		
	odel salt flat,		
	lowing the water to		
	vaporate, leaving		
	e salt behind.		
	xplain: Wrap-up		
	ides & teacher-led		
	scussion.		
	nchor Connection		
	tudents wonder:		
	here does the water		
	ome from to		
fil	l/refill aquifers?		
	tudents learn: With		
	lack of freshwater		
	nd rain, much of the		
	ater in the area		
	mply dried up. This		
	ft dry ground		
	ehind.		
	valuate: Lesson 2		
	ssessment		
	laborate:		
	xtensions include		
rea	adings, activities,		

mini-lessons, and an online simulation.		

 L3 Groundwater as a Natural Resource Focus question: "When you turn on the faucet, where does the water come from?" In this session, students construct an explanation about a surprising phenomenon: the existence of underground water. Engage: "L3 Video" Explore: In the hands-on activity, "Wanted: A Well", students play a game in which they must obtain and combine information about groundwater in order to select the best site to build a town. They evaluate the features of the landscape, plants in the area, and clues from the soil 	Develop and use models to describe a phenomena and a scientific principle Engage and support an argument with evidence, data, or a model Use math and computational thinking to describe and graph quantities such as area and volume to address scientific questions Obtain, evaluate, and communicate information from books and/or other reliable media to explain phenomena or solutions to a design problem	<pre>Vocabulary: Printout Slideshow</pre> Mini Lesson: What's the deepest hole anyone has ever dug? - Mystery Science Activity: Aquifer Station Video: Groundwater, Beneath the Surface KQED	IXL: Water on Earth Code LVZ Describe and graph water on Earth Code A2S Evaluate claims about natural resource use: groundwater Code N6M	Exploration 20 mins Hands-On Activity 25 mins Wrap-Up 10 mins Anchor Connection 30 mins
---	---	---	--	--

			1
and then deci			
where to dig			
Explain: Wr	ap-up		
slides & teach	her-led		
discussion.			
Anchor Coni			
Students wor			
Where does t			
come from to			
fill/refill aqui			
Students lear			
the Dust Bow			
native grasse			
the only plan	ts with		
deep roots the			
access groun			
Evaluate: Le	esson 3		
Assessment.			
Elaborate:	1 1		
Extensions in			
readings, disc			
videos, and a	ctivities.		

For "C ra In stu m wa Ea atti ag Eu Ez ha "N stu sin oc ho sy St ho of	4 Water Cycle ocus question: Can we make it in?" a this session, udents develop a odel to explain how ater cycles from the arth's surface to the mosphere and back gain. ngage: L4 Video xplore: In the ands-on activity, Make It Rain", udents create mple models of the cean and sky to see ow these two ystems interact. tudents compare ow the temperature f the ocean and the	Develop and use models to describe a phenomena and a scientific principle Engage and support an argument with evidence, data, or a model Use math and computational thinking to describe and graph quantities such as area and volume to address scientific questions Obtain, evaluate, and communicate information from books and/or other reliable media to explain phenomena or solutions to a design problem	Vocabulary: Printout Slideshow ELA Extension: My Life as a Drip Videos: The Great Aquifer Adventure (4:28) reviews the basics of evaporation, condensation, and precipitation. Crash Course Kids - YouTube Discussion: Are you drinking the same water the dinosaurs drank? Water is always	IXL:Describe the geosphere, biosphere, hydrosphere, and atmosphere Code ZLLLabel parts of the water cycle Code FG2Select parts of water cycle Code BND	Exploration 23 mins Hands-On Activity 25 mins Wrap-Up 7 mins Anchor Connection 30 mins
oc hc sy St hc of	cean and sky to see ow these two ystems interact. tudents compare ow the temperature	from books and/or other reliable media to explain phenomena or solutions to	Discussion: Are you drinking the same water the dinosaurs drank?		
ev co Ex sli	cy affect vaporation and ondensation. xplain: Wrap-up ides & teacher-led iscussion.		clouds, then raining down to fill lakes and oceans. That means the earth's water gets used over and over again. Think about what that		

Anchor Connection Students wonder: How do ocean temperatures affect the amount of rainfall in an area? Students learn: Students reason that a severe drought led to dry soil and dying plants. Without the plants' roots, there was nothing to hold the soil in place. Evaluate: Lesson 4 Assessment Elaborate: Extensions include readings, videos, online resources, discussions, and an ELA extension.	means for the water you drink. What does that mean for people today? Are we using the same water that dinosaurs used? What does that mean for people in the future? Will they use the same water you're using? Are there things we should all do to save and protect water for the future?	
--	---	--

L5 Natural	Develop and use models	Vocabulary:	IXL:	Exploration
Disasters and	to describe a phenomena	Printout	Evaluate multiple design	15 mins
Engineering	and a scientific principle	Slideshow	solutions to prevent	Hands-On
Focus question			flooding Code G5K	Activity
How can you save a	Engage and support an	Mini Lesson:	-	35 mins
town from a	argument with evidence,	What makes hurricanes	Identify the best design	Wrap-Up
hurricane?	data, or a model	so dangerous?	solution to prevent	5 mins
		_	hurricane damage	Anchor
In this session,	Use math and	Activity:	Code R9W	Connection
students examine the	computational thinking to	Tell your students that		30 mins
causes of flooding	describe and graph	the people of	Identify parts of the	
using the real-world	quantities such as area	Beachtown had a	engineering process	
example of Hurricane	and volume to address	meeting to discuss the	Code HVS	
Katrina.	scientific questions	proposals your class		
	1	came up with. Ask	Evaluate tests of	
Engage: L5 Video	Obtain, evaluate, and	your students how they	engineering design	
Explore: In the	communicate information	would answer these	solutions Code V6M	
hands-on activity,	from books and/or other	questions or address		
Save Beachtown,	reliable media to explain	these issues.	Use data from tests to	
students propose	phenomena or solutions to	Remember: There are	compare engineering	
plans to prevent	a design problem	no right answers and it	design solutions	
flooding and save		may be difficult to	Code 8Z4	
historic buildings in a		make everyone happy.		
coastal town–all		5 115	Explore the engineering	
while staying within		Discussion:	design process - Going to	
budget!		The 2012 Atlantic	the Moon! Code ZFL	
Explain: Wrap-up		Hurricane Season		
slides & teacher-led		video (4:05)	Identify control and	
discussion.		see $\underline{L5}$ for discussion	experimental groups	
Anchor Connection		questions.	Code WKB	
Students learn: This		1		

in ocean temperatur rainfall pa When the o temperatur	hat changes res impact atterns. pocean res cool, n decrease, roughts Lesson 5 nt : s include activities, s, and d	Identify independent and dependent variables Code JZJ	

Unit Assessment	Develop and use models	IXL:	
or	to describe a phenomena	Describe the geosphere,	
Performance Task:	and a scientific principle	biosphere, hydrosphere,	
Interactions of	1 1	and atmosphere	
Earth's Spheres and	Engage and support an	Code ZLL	
Argumentation	argument with evidence,		
Focus question:	data, or a model	Describe and graph water	
How can you protect	,	on Earth Code A2S, TZK	
a farm from the next	Use math and		
Dust Bowl?	computational thinking to	Evaluate claims about	
	describe and graph	natural resource use:	
Elaborate:	quantities such as area	ground water Code N6M	
In the Performance	and volume to address	<u> </u>	
Task, students inherit	scientific questions		
a farm in the	±		
Midwest. They use	Obtain, evaluate, and		
their Dust Bowl	communicate information		
model to evaluate	from books and/or other		
four Drought	reliable media to explain		
Protection kits and	phenomena or solutions to		
select which one they	a design problem		
think is the best			
choice. Students			
write an argument to			
defend their kit			
selection, using			
evidence from the			
unit.			

Unit 3 Assessments

Diagnostic	Formative	Summative
See, Think, and Wonder Charts	Class discussion, teacher observations, IXL quizzes	Claims-Evidence- Reasoning (CER)
Directed Question Board (DQB)	quilles	Unit 3 Assessments
		Performance Task: <u>How can you protect a</u> <u>farm from the next dust bowl?</u>

Curriculum Plan

Units 4 and 5: Stars and the Solar System Curriculum Map

Unit Overview

The bundle organizes performance expectations with a focus on helping students build understanding of the Earth's position in the solar system and universe. The idea that the sun is a star that appears larger and brighter than other stars because it is closer (ESS1.A as in 5-ESS1-1) connects to the idea that there are observable patterns – such as different positions of the sun at different times of the day, month, and year – caused by the orbits of Earth around the sun and of the moon around Earth, together with the rotation of Earth about an axis (ESS1.B as in 5-ESS1-2), as both address the appearance of objects in the sky based on our position relative to other objects in the solar system and universe.

PA STEELS Standards	Big Idea	Essential Questions
3.3.5.A Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative	We can infer information about stars based on observations we make from Earth.	What is the universe, and what is Earth's place in it?
distances from Earth. (<u>5-ESS1-1</u>) <u>3.3.5.B</u> Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. (<u>5-ESS1-2</u>)	Observations of the sky can be explained by predictable patterns of the movement of Earth, moon, sun and planets.	What are the predictable patterns caused by Earth's movement in the solar system?
Technology & Engineering: 3.5.3-5.CC Describe how a subsystem is a system that operates as a part of another larger system. 3.5.3-5.L Demonstrate how tools and machines extend human capabilities, such as		

holding, lifting, carrying, fastening,	
separating, and computing.	
3.5.3-5.AA Create representations of the	
tools people made, how they cultivated to	
provide food, made clothing, and built	
shelters to protect themselves.	
3.5.3-5.N Identify why a product or system is	
not working properly.	
3.5.3-5.K Judge technologies to determine	
the best one to use to complete a given task	
or meet a need.	
3.5.3-5.P Evaluate the strengths and	
weaknesses of existing design solutions,	
including their own solutions.	
3.5.3-5.Q Practice successful design skills.	
Environmental Literacy & Sustainability:	
3.4.3-5.G Investigate how perspectives over	
the use of resources and the development of	
technology have changed over time and	
resulted in conflict over the development of	
societies and nations.	

Mystery Science Science: A Closer Look IXL Discovery Education Read Works

Units 4 and 5: Stars and the Solar System Curriculum Plan

Students will know (DCI)	Students will be able to (SEP)	Students will apply(CCC)	DOK Level(s)
The sun is a star that appears larger and brighter than other stars because it is closer. Stars range greatly in their distance from Earth. The orbits of Earth around the sun and of the moon around Earth, together with the rotation of Earth about an axis between its North and South poles, cause observable patterns. These include day and night; daily changes.	Engaging in Argument from Evidence: Support an argument with evidence, data, or a model. Analyzing and Interpreting Data: Represent data in graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships.	Scale, Proportion, and Quantity: Natural objects exist from the very small to the immensely large. Patterns: Similarities and differences in patterns can be used to sort, classify, communicate and analyze simple rates of change for natural phenomena.	DOK Level 3 (Strategic Thinking): Supporting an argument involves reasoning, analyzing evidence, and synthesizing information to explain the relationship between brightness and distance, which requires critical thinking and deeper analysis. DOK Level 2 (Skills/Concepts): Representing data in graphical displays requires organizing information and identifying patterns, which involves understanding and applying concepts, but does not require extended or strategic thinking.

Learning Objectives/DOK Levels

Core Activities and Corresponding Instructional Methods

Mystery Science Unit(s)	Core Activities	Corresponding Instructional Methods	Extensions	Correctives	Time/Days
Unit 4: Earth & Space Patterns Unit (Spaceship Earth) In this unit, students explore our solar system! They investigate how bright the Sun appears from each planet in our solar system in addition to stars of other solar systems in galaxies far away. They also investigate	Mystery Science Teacher Guide * After each lesson return to See, Think, Wonder and add to model. Lesson 0: Anchoring Phenomenon: Star Trails The anchor for this unit is star trails that appear in long-exposure photographs. Students generate observations and questions about the phenomenon and create an initial model to explain what causes these patterns to form.	Suggested Routine Lesson 0: -Intro Phenomenon -Connect • See, Think, Wonder -Question • Driving Question Board (DQB) • Questionin g Circle - Create Models (Individual and/or Group) -Discussion • Claims- Evidence- Reasoning (CER)	Unit Reading: What do A.M and P.M. mean? How does a leaf know when to change its color? The many names for a full Moon	IXL:Constellations and the changing night sky- Code 4S8Shadows- Code: 9PBDay and night- Code S9NBrightness of the Sun and other stars-Code E2RIdentify direction of forces-Code UQDWhat causes seasons on Earth?-Code 7XRPhases of the Moon- Code 4T6	Approximately 1 lesson per week- Wk 1: anchor phenomenon Wk 2-6: lessons Wk 7: assess Anchor Phenomenon 13 mins Guided Inquiry 30 mins Hands-On Activity 30 mins Wrap-Up 2 mins

gravity on Earth and gravity on other planets to discover patterns of this incredible force.	-Connect to Anchor • <u>Summary</u> <u>Table</u> (to be completed at the end of each lesson)		
---	---	--	--

 L1: Day, Night, and Earth's Rotation Focus question: How fast does the Earth spin? In this session, students come to understand that the setting Sun isn't moving, the Earth is spinning. Engage: L1 video Explore: In the hands- on activity, "Spinning Earth," students use their bodies as a kinesthetic model of the Earth to understand how the speed of the Earth's spin affects the length of a day. Explain: Wrap-up slides & teacher-led discussion. Anchor Connection- Students wonder: Can the Sun's position in the sky help us tell the time of day? 	Engage in argument and support with evidence, data, or a model Analyze and interpret data: Represent data in graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships	Vocabulary: Printout SlideshowMini-lessons: Why do places have different times?Is there a pole at the North Pole?Activities: See L1 for details.Earth in the Sun On the MoveSky Dome	IXL: Day and night- Code S9N Shadows- Code: 9PB Constellations and the changing night sky- Code 4S8 Brightness of the Sun and other stars-Code E2R	Exploration 15 mins Hands-On Activity 30 mins Wrap-Up 5 mins Anchor Connection 30 mins
---	--	---	---	---

Earth is that rota causes to appear sky. The move— Evaluat L1 Ass Elabora include				
--	--	--	--	--

L2: Earth's Rotation and Daily Shadow Patterns Focus question: Who set the first clock? In this session, students will learn why our ancestors divided the day into hours and how clocks measure the Sun's apparent movement. Engage: L2 video Explore: In the hands- on activity, "Make a Shadow Clock," students make their own sundials. First, students use flashlights	Engage in argument and support with evidence, data, or a model Analyze and interpret data: Represent data in graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships	Vocabulary: <u>Printout</u> <u>Slideshow</u> Videos: Explore the movement of shadows with three time-lapse videos. Ask the question before playing the video. Can your students figure out the answer? <u>Why are these</u> <u>shadows moving so</u> <u>fast?</u> <u>Which direction are</u> you facing when you sit in this chair?	IXL: Shadows- Code 9PB Day and night- Code S9N Brightness of the Sun and other stars-Code E2R	Exploration 20 mins Hands-On Activity 25 mins Anchor Connection 30 mins
Explore: In the hands- on activity, "Make a		shadows moving so		
students make their				
indoors to understand how the position of the light affects the time shown on the clock.		How is the movement of the		
Then, students take their shadow clocks outside to see how the		clock's hands like the movement of the shadow?		
position of the Sun can tell them the time of day.		Activities: See <u>L2</u> for details.		

Explain: Wrap-up slides & teacher-led discussion. Anchor Connection- Students wonder: Is the Sun always overhead at noon? Students learn: Just like the Sun, the stars appear to rise in the east and set in the west due to the Earth's rotation. The stars don't move—we do! Evaluate: L2 Assessment. Elaborate: Extensions include readings, activities, and videos.		Match the sun's position to clock time Moving Shadow Game		
L3: Seasonal Changes and Shadow Length Focus question: How can the Sun tell you the season? In this session, students discover how the Sun's path changes with the seasons. Engage: L3 video	Engage in argument and support with evidence, data, or a model Analyze and interpret data: Represent data in graphical displays (bar graphs, pictographs and/or	Vocabulary: <u>Printout</u> <u>Slideshow</u> Activities: See <u>L3</u> for details. Show how the Sun's position changes over weeks by marking a shadow.	IXL:What causes seasons onEarth?-Code 7XRShadows- Code 9PBBrightness of the Sun and other stars-Code E2R	Exploration 20 mins Hands-On Activity 25 mins Anchor Connection 30 mins

 Explore: In the visual activity, "Guess the Season," students figure out the season of the year by studying a photo. Students come to realize that they can use the time of day and length of shadows to figure out the season in each photo. Explain: Wrap-up slides & teacher-led discussion. Anchor Connection-Students wonder: Does anything else in the sky change with the seasons? Students learn: During the Summer, the length of time that the Sun is visible each day is longer and the length of time the stars are visible each night is shorter. The opposite is true in the winter. Evaluate: L3 Assessment. 	pie charts) to reveal patterns that indicate relationships	Add the Sun's summer and winter paths to the Sky Dome that you made in the "How fast does the Earth spin?" .		
--	---	--	--	--

Elaborate: Extensions include readings, activities, and a demonstration.				
 *L4: Seasonal Patterns and Earth's Orbit *To align with pacing, view lesson video and omit activity. Focus question: Why do the stars change with the seasons? In this session, students will be introduced to the Earth's orbital movement around the Sun, as a means of seeing why the constellations change. Engage: L4 video Explore: In the hands- on activity, Universe- in-a-Box, students make a paper model that helps them 	Engage in argument and support with evidence, data, or a model Analyze and interpret data: Represent data in graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships	Vocabulary: Printout Slideshow Online Resource: Astronomy Picture of the Day Activities: See L4 for details. Sky Heroes Finding Your Way to Mars, Pennsylvania	IXL:Constellations and the changing night sky- Code: 4S8What causes seasons on Earth?-Code: 7XRBrightness of the Sun and other stars-Code: E2R	Exploration 20 mins Hands-On Activity 25 mins Anchor Connection 30 mins

visu	alize the Earth's		
	ly orbit around the		
	They use this		
	el to understand		
	some		
	stellations are only		
visit	ble during part of		
the y			
	lain: Wrap-up		
	es & teacher-led		
	ussion.		
	hor Connection-		
	lents wonder: The		
	on looks different on		
	erent nights. Is there		
	ttern to the Moon's		
	nges?		
	lents learn: While		
	y stars do change		
	n season to season,		
	stars near the North		
	don't. This is		
	use the North Pole		
	med very close to		
	North Star, and this		
	of the night sky is		
visik	ole throughout the		
year			
	luate:		
L4 A	Assessment.		

Elaborate: Extensions include readings, activities, an online resource, and an ELA + geography extension.				
L5: Moon Phases, Lunar Cycle Focus question: Why does the Moon change shape?This lesson explores why the Moon seems to change shape (phases) over the course of a month.Engage: L5 video Explore: In the hands- on activity, "Model the Moon's Phases", students use a 	Engage in argument and support with evidence, data, or a model Analyze and interpret data: Represent data in graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships	Vocabulary: <u>Printout</u> <u>Slideshow</u> <u>Mini-Lesson:</u> <u>How do we know</u> <u>the Earth is round?</u> <u>Activities:</u> <u>See L5</u> for details. Moon Journal The Moon's Face	IXL: <u>Phases of the Moon-Code 4T6</u> <u>Constellations and the changing night sky-Code 4S8</u> <u>Day and night- Code S9N</u>	Exploration 13 mins Hands-On Activity 25 mins Wrap-Up 7 mins Anchor Connection 30 mins

Moon are responsible for the Moon's phases.Explain: Wrap-up slides & teacher-led discussion.Anchor Connection- Students wonder: What other patterns can I see in the night sky?Students learn: The full Moon rises at sunset and sets at sunrise. Just as the Sun is always highest in the sky in the	t		
middle of the day, the Moon is always highest in the sky in the middle			
of the night. Evaluate: L5 Assessment.			
Elaborate: Extensions include: Readings and activities.			

Unit Assessment or Performance Task: Night Sky Focus question: How can you tell time at night?Elaborate: In the Performance Task, students use engineering design principles to invent a clock that uses patterns in the night sky. They evaluate possible patterns, suggest multiple ways to measure time with those patterns, and describe their final design and how it works.	Engage in argument and support with evidence, data, or a model Analyze and interpret data: Represent data in graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships		IXL: Phases of the Moon- Code 4T6Constellations and the changing night sky- Code 4S8What causes seasons on Earth?-Code 7XRBrightness of the Sun and other stars-Code E2RShadows- Code 9PBDay and night- Code S9N	Unit Review 20 mins Hands-On Activity 40 mins
---	--	--	--	---

Unit 5: Stars & Planets (Wandering Stars) In this unit, students explore our solar system! They investigate how bright the Sun appears from each planet in our solar system in addition to stars of other solar systems in galaxies far away. They also investigate gravity on Earth and gravity on	Mystery Science Teacher's Guide * After each lesson return to See, Think, Wonder and add to model. Anchor Phenomenon: Solar System Wandering Stars The anchor phenomenon for this unit is the wandering stars: a small number of objects in the night sky that appear to move completely separately from all of the other stars. Students generate observations and questions about the phenomenon and document their initial thinking about the characteristics of the wandering stars.	Suggested Routine Lesson 0: -Intro Phenomenon -Connect • See, Think, Wonder -Question • Driving Question Board (DQB) • Questionin g Circle - Create Models (Individual and/or Group) -Discussion • Claims- Evidence- Reasoning (CER) -Connect to Anchor • Summary Table (to be	Unit Reading: <u>A Simple Invention</u> that Changed the World	IXL: Brightness of the Sun and other stars-Code E2R Identify direction of forces-Code UQD Identify the planets in the solar system-Code SFA	Approximately 1 lesson per week- Wk 1: anchor phenomenon Wk 2-4: lessons Wk 5: assess Anchor Phenomenon 15 mins Guided Inquiry 20 mins Hands-On Activity 20 mins
Earth and	characteristics of the	• <u>Summary</u>			

incredible force.			

L1: Solar System and Sun Brightness Focus question: How can the Sun help us explore other planets?In this session, students gather evidence to support an argument that the apparent brightness of the Sun is dependent upon an observer's distance from the Sun.Engage: L1 video Explore: In the hands- on activity, Solar Energy Explorer, students construct a model solar system and gather observations of the Sun's apparent brightness from each planet within their model. Students then use those observations as evidence to support a claim about which planet is best suited to	Engage in argument and support with evidence, data, or a model Analyze and interpret data: Represent data in graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships	Vocabulary: Printout SlideshowMini Lessons: Why is Mars red?Is Pluto a planet?Is Pluto a planet?Why isn't Pluto a (major) planet anymore?Activity: See L1 for details.Create a Solar System Scale Model	IXL: Brightness of the Sun and other stars-Code E2R Models of the Earth, Sun, Moon system-Code 8FB	Exploration 15 mins Hands-On Activity 35 mins Wrap-Up 12 mins Anchor Connection 15 mins
---	--	--	--	--

r r	1		
explore with a solar-			
powered planetary			
rover.			
Explain: Wrap-up			
slides & teacher-led			
discussion.			
Anchor Connection			
Students wonder: What			
else is different on each			
planet?			
Students learn: The			
brightness of the light			
from the Sun varies			
significantly between			
the planets. This is due			
to their varying			
distance from the Sun.			
As one moves farther			
and farther away from			
the Sun, the light			
becomes dimmer and			
dimmer.			
Evaluate:			
L1 Assessment.			
Elaborate: Extensions			
include mini-lessons			
and activities.			

 L2: Gravity Focus question: Why is gravity different on other planets? In this lesson, students discover that gravity exists on all planets and moons, but the amount of gravity is different because it depends on how massive the object is. In the activity, Gravity Jump, students measure how high they can jump on Earth and then calculate how high they would be able to jump on other planets and moons within our Solar System. Engage: L2 video Explore: In this session, students discover that gravity exists on all planets and moons, but the amount of gravity is different because it depends 	Engage in argument and support with evidence, data, or a model Analyze and interpret data: Represent data in graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships	Vocabulary: Printout Slideshow Mini Lesson: What is a black hole? Activities: See L2 for details. Asteroid Jump Defying Gravity Your Weight on Other Worlds Exploratorium	IXL: Identify direction of forces-Code UQD	Exploration 5 mins Hands-On Activity 45 mins Wrap-Up 10 mins Anchor Connection 15 mins
---	--	---	--	---

	how massive the object		
	is.		
	Explain: Wrap-up		
	slides & teacher-led		
	discussion.		
	Anchor Connection		
	Students wonder:		
	Could you ever live on		
	or visit another planet?		
	Students learn: The		
	force of gravity on each		
	planet can vary		
	significantly.		
	Evaluate:		
	L2 Assessment.		
	Elaborate: Extensions		
	include readings,		
	activities, and Engage in		
	argument and support		
	with evidence, data, or		
	a model		
I	1		110

 L3: Star Brightness and Habitable Planets Focus question: Could there be life on other planets? In this lesson, students discover that the Earth is in the "Goldilocks Zone" — a distance from the Sun with the right amount of light and heat for life to exist. Engage: L3 video Explore: In the hands- on activity, "Star Explorer", students plan a space mission to another planet outside our Solar System based on the amount of heat and light that reaches the planet's surface. Once students plan their space mission, they will reflect on what our Sun would look like from this far- away planet. 	Engage in argument and support with evidence, data, or a model Analyze and interpret data: Represent data in graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships	Vocabulary: Printout Slideshow Mini Lessons: Is Earth the only planet with life? How close could an astronaut get to the Sun? Are aliens real? Activities: See L3 for details. NASA's Eyes (on exoplanets) NASA's Exoplanet Travel Bureau.	IXL: Brightness of the Sun and other stars-Code E2R	Exploration 16 mins Hands-On Activity 35 mins Wrap-Up 4 mins Anchor Connection 15 mins
---	--	---	---	---

Explain: Wrap-up slides & teacher-led discussion. Anchor Connection Students wonder: Which planet would be best to visit? Students learn: Ultimately, all other planets that scientists have discovered would be very hostile places for humans to live. Evaluate: L3 Assessment Elaborate: Extensions include: Readings, activities, and mini- lessons.			
Unit Assessment orPerformance Task: Solar SystemFocus question: What's the best place to visit in the Solar System?Elaborate: In the Performance	Engage in argument and support with evidence, data, or a model Analyze and interpret data: Represent data in graphical displays (bar graphs,	IXL: <u>Brightness of the Sun and</u> <u>other stars-Code E2R</u> <u>Identify direction of</u> <u>forces-Code UQD</u>	Unit Review 20 mins Hands-On Activity 40 mins

Task, students engage in evidence-based	pictographs and/or pie charts) to		
argumentation to	reveal patterns that indicate		
explain why one of the planets in our solar			
1	relationships		
system would be best to visit for themselves, a			
friend, or a family			
member. They apply what they have learned			
throughout the unit			
about the physical			
characteristics of the			
planets to complete this			
task. At the end of the			
slides, you can choose			
what you would like for			
your students to do			
next. They can use their			
Solar System Trip			
Planner to create a fully			
written letter as a			
writing task, or create a			
presentation, or create a			
poster. In addition to			
the information			
contained within the			
lessons in this unit, you			
can provide your			
students with books,			
websites, or other			

Irrowladge		resources that they can use to gather information about the various planets and moons within our solar system. While not necessary, it is a great opportunity for students to extend the depth and breadth of their knowledge.				
------------	--	--	--	--	--	--

Units 4 & 5 Assessments

Diagnostic	Formative	Summative
See, Think, and Wonder Charts	Class discussion, teacher observations, IXL quizzes, lesson quizzes	Claims-Evidence- Reasoning (CER)
Directed Question Board (DQB)	quilles, resson quilles	Unit 4 Assessments
		Unit 4 Performance Task
		Unit 5 Assessments
		Unit 5 Performance Task

Curriculum Plan

Unit 6: Matter Properties (OpenSciEd) Curriculum Map

Unit Overview

Water is essential for all living things, leading many cultures to proclaim, "Water Is Life." In this unit, students investigate natural water systems to determine whether they are healthy or unhealthy, considering different species' needs and exploring ways to improve water quality. Students begin by analyzing four water samples (Lake, Pool, Metallic, and Rain Water) and creating models to explain what might make them healthy or unhealthy. They observe properties to identify materials in the water and design a filter to remove visible contaminants. However, they realize that some unhealthy particles remain.

PA STEELS Standards	Big Idea	Essential Questions
5-PS1-1: Develop a model to describe that matter is made of particles too small to be seen.5-PS1-2: Measure and graph quantities to	We can change the chemical and physical properties of different materials to support access to healthy water for living things.	How can we make water healthy for all living things? How can we identify properties of matter?
provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.		How can we design an engineered solution that changes the properties of our water samples to be more healthy by removing
5-PS1-3: Make observations and measurements to identify materials based on their properties.5-PS1-4: Conduct an investigation to		materials from the mixture?
determine whether the mixing of two or more substances results in new substances.		
Technology & Engineering: ETS1- 1: Define a simple design problem		

reflecting a need or a want that includes	
specified criteria for success and constraints	
on materials, time, or cost.	
ETS1-3: Plan and carry out fair tests in which	
variables are controlled and failure points are	
considered to identify aspects of a model or	
3.5.3-5.A prototype that can be improved.	
Use appropriate symbols, numbers and words	
to communicate key ideas about	
technological products and systems.	
3.5.3-5.C Follow directions to complete a	
technological task.	
3.5.3-5.N Identify why a product or system is	
not working properly.	
3.5.3-5.H Determine factors that influence	
changes in a society's technological systems	
or infrastructure.	
3.5.3-5.P Evaluate the strengths and	
weaknesses of existing design solutions,	
including their own solutions.	
3.5.3-5.Q Practice successful design skills.	
3.5.3-5.R Apply tools, techniques,	
and materials in a safe manner as part of the	
design process.	
3.5.3-5.S Illustrate that there are multiple	
approaches to design.	
3.5.3-5.U Evaluate designs based on criteria,	
constraints, and standards.	
3.5.3-5.V Interpret how good design	
improves the human condition.	
3.5.3-5.I Design solutions by safely using	
tools, materials, and skills	

 3.5.3-5.EE Explain how solutions to problems are shaped by economic, political, and cultural forces. 3.5.3-5.O Describe requirements of designing or making a product or system. 3.5.3-5.ZCreate a new product that improves someone's life. 	
Environmental Literacy & Sustainability: 3.4.3-5.C Examine ways you influence your local environment and community by collecting and displaying data. 3.4.3-5.F Critique ways that people depend on and change the environment.	

Textbook and Supplemental Resources

OpenSciEd Unit 5.2 Matter Properties Text, Filtering Water (Lesson 3) IXL

Unit 6: Matter Properties (OpenSciEd) Curriculum Plan

Students will know (DCI)	Students will be able to (SEP)	Students will apply(CCC)	DOK Level(s)
PS1.A: Structure and Properties of Matter. Develop a model to describe that matter exists of particles too small to be seen. Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means.	Developing and Using Models: Use models to describe phenomena. Using Mathematics and Computational Thinking: Measure and graph quantities such as weight to address scientific and	Cause and effect relationships are routinely identified, tested, and used to explain change. (CE-E1) Scale, Proportion, and Quantity Natural objects and/or observable phenomena exist from the very small to the	DOK Level 3 (Strategic Thinking): Supporting an argument involves reasoning, analyzing evidence, and synthesizing information to explain the relationship between brightness and distance, which requires critical thinking and deeper analysis.
The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. (Boundary: Mass and weight are not distinguished at this grade level.) Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define	engineering questions and problems. Planning and Carrying Out Investigations: Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon. Planning and Carrying Out Investigations: Conduct an investigation collaboratively to produce data to serve as the	 immensely large or from very short to very long time periods. (SPQ-E1) Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. Energy and Matter Matter is made of particles. (EM-E1) Matter flows and cycles can be tracked in terms of the weight of the substances before and after a process occurs. The total weight 	DOK Level 2 (Skills/Concepts): Representing data in graphical displays requires organizing information and identifying patterns, which involves understanding and applying concepts, but does not require extended or strategic thinking.

Learning Objectives/DOK Levels

the atomic scale mechanism of evaporation and condensation.)	basis for evidence, using fair tests in which variables are controlled and the number of trials considered.	of the substances does not change. This is what is meant by conservation of matter. Matter is transported into, out of, and within systems. (EM-E2) Energy can be transferred in various ways and between objects. (EM-E3)	
--	--	---	--

Core Activities and Corresponding Instructional Methods

OpenSciEd Unit	Core Activities	Corresponding Instructional Methods	Extensions	Correctives	Time/Days
Unit 6:Openscied.orgMatterPropertiesOpensciedMatterPropertiesTeacher GuideUnit 6StorylineElementaryTeacherHandbookToolsStudentHandouts	Anchoring Phenomenon Driving Question: How can we tell if water is healthy or unhealthy? lesson slides Refer to Teacher Guide for details (download unit). Focus Question: How can we identify properties of matter? Lesson 1 Slides Session 1- :45 In this Anchoring Phenomenon Lesson, we work in small groups to sort pictures of water into categories. We observe water	Intro Phenomenon Connect • See, Think, Wonder Create Models • (Individual and/or Group) Question • Driving Question Board (DQB) • Questionin g Circle Investigate Discussion • Discussion • Discussion Summary Table end of each lesson Claims-Evidence-	Unit Vocabulary: material, mixture, property, constraints, criteria, matter, particles, substance, water treatment To learn more: Water health as a justice-focused phenomenon Water quality & methods of treating water	IXL: Identify mixtures FK8 Compare solutionsY8Q Evaluate claims about natural resource use: groundwater	Approximately 1 lesson per week L1: Session 1- :45 Session 2- :30 Session 3- :45 Lesson 1 L1 Teacher Prep Video Preparation and Materials. Water Sample Prep & Materials Safety Information

			1
samples and create a	Reasoning (CER)		
model of the sample we	summative		
think is the least	response at		
healthy. We also think	end of unit		
about how to make the			
sample healthy again.	L1: Handouts		
Connect to our	Healthy/Unhealthy		
experiences with water.	Water?		
Slides A-B			
Explore	Initial Model		
Make observations. In			
small groups, we	Related		
observe and sort photos	Phenomena		
of bodies of water,			
share our ideas about	Investigation Ideas		
how to sort them, and			
observe water samples			
to gather additional			
evidence.			
Healthy/Unhealthy			
Water?, cards from			
Bodies of Water Card			
Sort, water samples			
created from Water			
Samples			
Synthesize individually			
develop models			
explaining why the			
water is unhealthy			
water is uniteratily			

PreparationLesson 1, "Health of the water" chart paper Slides C-E Session 2- :30 Synthesize- discuss the health of the water samples Connect- consider water -related phenomena in our community Session 3- :45 Synthesize- create class DQB and investigation ideas Summary Table end of each lesson				
L2: Water Samples Focus question: <u>What else can we</u> <u>figure out about our</u> <u>water samples?</u> Refer to <u>Teacher</u> <u>Guide</u> for details.	Engage in argument and support with evidence, data, or a model Analyze and interpret data: Represent data in	Vocabulary: material, mixture, property, constraints, criteria, matter, particles, substance, water treatment	IXL: <u>Identify mixtures FK8</u> <u>Compare solutionsY8Q</u> <u>Evaluate claims about</u> <u>natural resource use:</u> <u>groundwater</u>	1 lesson per week L2: Session 1- :45 Session 2- :45 Session 3- :45 *modify times as needed

Lesson 2 Slides	graphical displays		
	(bar graphs,		Prep water
Session 1- :45	pictographs and/or		samples:
Navigate: Introduce	pie charts) to		Make a class set
our purpose	reveal patterns that		of the four water
As a class, we connect	indicate		samples that
the work of our current	relationships		students will
unit to the need to	_		observe, test,
return to and revise the	L2 Handouts:		filter, and try to
first classroom			make healthier.
agreement of "We can	Water		
do science in many	Observations		Make a subset of
different ways."			the water samples
Explore: Make	Properties and		for students to
observations.	Materials		observe in small
As a class, we observe			groups.
and reflect on artifacts	Properties and		
of students doing	Materials Key		
science in different			
ways.	My Growing		
Connect: share what	Ideas Chart		
we observed about			
water in our own lives			
Synthesize: chart the			
properties we observed			
Session 2- :45			
Navigate- recall where			
we left off			
Connect- share what			
we observed about			

water in our own lives Explore - observe water samples Synthesize - chart the properties we observed Session 3- :45 Explore - make sense of properties data Synthesize - identify materials based on their properties and create the My Growing Ideas chart <u>Summary Table</u> end of each lesson Navigate - decide where to go next				
 L3: Filtering Water Investigation Focus question: How can we design filters to separate these materials out of the water? Refer to Teacher Guide for details. 	L3 Handouts: Engineers Solve Problems Filter Design & Testing Conduct an Initial Test	Vocabulary: material, mixture, property, constraints, criteria, matter, particles, substance, water treatment Reading:	IXL: Identify mixtures FK8 Compare solutionsY8Q Evaluate claims about natural resource use: groundwater	1 week L3: Session 1- :35 Session 2- :25 Session 3- :30 <u>Prepare supplies</u> for designing & testing with water filter

Lesson 3 Slides In this session, students design and test a filter	Record Observations Revisit Design	Introduce the <i>Who</i> <i>Else Filters Water?</i> book. Display slide D. Tell students that	Be prepared to store groups' filtered water
to separate out	Kevisit Design	before we filter our	samples in bottles
materials that can be	Decide to start	own water samples,	with lids.
seen in the water	improving the	we will get a chance	Students will use
samples.	health of our water	to see some other	them in the next
0. 1 25	samples by	examples of water	lesson when they
Session 1-:35	removing the visible materials.	being filtered by	work on
Navigate- recall where we left off	visible materials.	reading a book. Tell students to keep the	optimizing their filter designs.
Connect- read a book	Brainstorm and	sample they will be	inter designs.
Explore- define a	read about ideas to	filtering in mind as	
problem	build filters.	they listen to the	
	Identify success	book.	
Session 2- :25	criteria and		
Explore- plan a filter	limiting constraints	Read: Display slide	
design and	for designing	F Distribute the	
investigation	filters.	Engineers Solve	
Session 3- :30	Design a filter and	Problems and Design Solutions	
Explore - test filter	investigation plan	handout and have	
designs	for one of the	students read the	
Synthesize- reflect on	water samples.	article in pairs to	
our designs	Test the water	review the key	
Summary Table	filters.	aspects of defining	
end of each		problems and	
lesson	We need to	designing solutions.	
Navigate- consider	account for criteria		
where to go next	and constraints		

	when designing solutions for engineering problems. During design testing, we collect data to decide if a design meets the criteria. Since the materials in the water are matter, we can weigh our samples to see how much matter is removed by filtering.			
L4: Investigation Focus Question: <u>How can we develop</u> <u>and optimize our filters</u> <u>to separate unhealthy</u> <u>materials out of the</u> <u>water?</u> <u>Lesson 4 Slides</u>	L4 Handouts: <u>Optimize, Test, &</u> <u>Reflect</u> <u>Properties of Water</u> <u>Samples</u> Optimize and test the filter we designed in Lesson 3. Use our	Vocabulary: optimize, material, mixture, property, constraints, criteria, matter, particles, substance, water treatment Materials: cheesecloth, coffee filters, gravel, sand,	IXL: Identify mixtures FK8 Compare solutionsY8Q Evaluate claims about natural resource use: groundwater	1 lesson per week L4: Session 1- :40 Session 2- :40 Prepare filtering supplies and have groups' filtered samples

Refer to Teacher Guide for details.	investigation data to decide how to	strainer, funnel, tall plastic cups	from Lesson 3 accessible.
	redesign our filter.	goggles, gloves,	
Session 1- :40	Compare our	paper towels	Lesson 4
Navigate- recall where	redesigned and		Materials &
we left off	original filters to		Prep
Explore- optimize our	decide which one		
filter designs	worked best to		
	remove materials		
Session 2- :40	from our water		
Explore- reflect on our	sample. Identify		
optimization	how our filter		
Synthesize- connect	design and		
our work to the	investigation		
engineering process and	activities fit with		
update My growing	the Engineering		
Ideas chart	Design Process.		
Make sense of what we	Our water samples		
have learned.	weigh less after		
Summary Table	filtering, so we		
end of each	know that we got		
lesson	at least some of the		
Navigate- questions we	materials out of the		
still have	water. We identify		
	how our filter		
	design and		
	investigation		
	activities fit with		
	the Engineering		
	Design Process.		
	Our redesigned		

filters were able to remove a lot of the materials that we could see in our water samples	
---	--

Unit 6 Assessme Students respond Unit Driving Que How can we mak water healthy for living things? by creating a <u>Claims</u> Evidence- Reason (<u>CER</u>) summative respon- end of unit	to argument and estion: support with e evidence, data, or a all model Analyze and interpret data: Represent data in	Vocabulary: material, mixture, property, constraints, criteria, matter, particles, substance, water treatment	IXL: Identify mixtures FK8 Compare solutions Y8Q Evaluate claims about natural resource use: groundwater	Unit Assessment 30-40 mins
---	---	---	---	-------------------------------

Units 6 Assessments

Diagnostic	Formative	Summative
Initial Model handout (Lesson 1)	 Drawings Spoken Descriptions Movement and/or Gestures Discussion prompts provided in the lesson. Make observations of properties in water samples Self and Peer Assessment 	 Develop a model to describe the causes of what is making the water healthy and unhealthy and how to make the water healthy again. (Lesson 1) On the <u>Water Observations</u> handout (Lesson 2) Filter Design and Testing handout. (Lesson 3) Optimize, Test, & Reflect handout (Lesson 4) Claims-Evidence- Reasoning (CER) Summary Table

Checklist to Complete and Submit: (Scan and email)

 Copy of the curriculum using the template entitled "Planned
Instruction," available on the district website.

____ The primary textbook form(s).

The appropriate payment form, in compliance with the maximum curriculum writing hours noted on the first page of this document.

Each principal and/or department chair has a schedule of First and Second Readers/Reviewers. Each Reader/Reviewer must sign & date below.

First Reader/Reviewer Printed Name_____

First Reader/Reviewer Signature_____ Date_____

Second Reader/Reviewer Printed Name

Second Reader/Reviewer Signature _____ Date_____

Please Go to Human Resources page on the Delaware Valley School District website for updated Payment form to be submitted.

https://pa01001022.schoolwires.net/site/handlers/filedownload.ashx?moduleinstanceid=7055&dataid=16708&FileName=AUTHORIZ ATION%20FOR%20PAYMENT%20-%20SECURED.pdf